Ranking Mechanisms for Interaction Networks

نویسندگان

  • Sameep Mehta
  • Ramasuri Narayanam
  • Vinayaka Pandit
چکیده

Interaction networks are prevalent in real world applications and they manifest in several forms such as online social networks, collaboration networks, technological networks, and biological networks. In the analysis of interaction networks, an important aspect is to determine a set of key nodes either with respect to positional power in the network or with respect to behavioral influence. This calls for designing ranking mechanisms to rank nodes/edges in the networks and there exists several well known ranking mechanisms in the literature such as Google page rank and centrality measures in social sciences. We note that these traditional ranking mechanisms are based on the structure of the underlying network. More recently, we witness applications wherein the ranking mechanisms should take into account not only the structure of the network but also other important aspects of the networks such as the value created by the nodes in the network and the marginal contribution of the nodes in the network. Motivated by this observation, the goal of this tutorial is to provide conceptual understanding of recent advances in designing efficient and scalable ranking mechanisms for large interaction networks along with applications to social network analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Comparison of Hubs in Effective Normal and Tumor Protein Interaction Networks

ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...

متن کامل

Expertise ranking using activity and contextual link measures

Article history: Received 20 April 2010 Received in revised form 24 August 2011 Accepted 25 August 2011 Available online 5 September 2011 The Internet has transformed from a Web of content to a people-centric Web. People actively use social networking platforms to stay in contact with friends and colleagues. The availability of rich Web-based applications allows people to collaborate and intera...

متن کامل

Expertise Ranking in Human Interaction Networks based on PageRank with Contextual Skill and Activity Measures

We introduce a link intensity-based ranking model for recommending relevant users in human interaction networks. In open, dynamic collaboration environments enabled by Service-oriented Architecture (SOA), it is ever more important to determine the expertise and skills of users in an automated manner. Additionally, a ranking model for humans must consider metrics such as availability, activity l...

متن کامل

Link Classification and Tie Strength Ranking in Online Social Networks with Exogenous Interaction Networks

Online social networks (OSNs) have become the main medium for connecting people, sharing knowledge and information, and for communication. The social connections between people using these OSNs are formed as virtual links (e.g., friendship and following connections) that connect people. These links are the heart of today’s OSNs as they facilitate all of the activities that the members of a soci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011